Differing roles for platelet-activating factor during inflammation of the lung and subarachnoid space. The special case of Streptococcus pneumoniae.
نویسندگان
چکیده
Although well-characterized in the lung, the role of platelet-activating factor (PAF) in inflammation in the central nervous system is undefined. Using rabbit models of meningitis and pneumonia, PAF was found to induce significant blood-brain barrier permeability and brain edema at doses five times lower than those required to generate leukocyte recruitment to the subarachnoid space. Both leukocytosis and increased vascular permeability occurred in response to PAF in the lung. Antibody to the CD-18 family of leukocyte adhesion molecules inhibited leukocyte recruitment in response to PAF in the brain (greater than 80%); a similar level of inhibition in the lung required treatment with a combination of a PAF receptor antagonist (L-659,989) and anti-CD18 antibody. Treatment with L-659,989 decreased abnormal cerebrospinal fluid cytochemical values induced by intracisternal challenge with pneumococci but not Haemophilus influenzae, indicating a special role for PAF in pneumococcal disease. Antibodies directed at phosphorylcholine, a unique, shared determinant of bioactivity of PAF and pneumococcal cell wall, obviated the inflammatory potential of both agents. However, no evidence for a direct PAF-like activity of pneumococcal cell wall components was detected in vitro by bioassay using platelets or neutrophils. It is concluded that PAF can induce inflammation in the subarachnoid space. In brain, PAF effects appear to be mediated through CD-18-dependent events, while in lung, PAF effects independent of CD-18 are also evident. At both sites, PAF is of particular clinical importance during inflammation induced by pneumococci apparently due to a unique proinflammatory relationship between the pneumococcal cell wall teichoic acid and PAF.
منابع مشابه
P 143: The Effect of Platelet Activating Factor on Inflammatory Response in Multiple Sclerosis
Multiple sclerosis is an autoimmune disease of the central nervous system which its main characteristic is an inflammation and demyelination and subsequent, neural degeneration. Many studies have shown that inflammation causing neuronal demyelination. MS is the most common cause of chronic neurological disability in during youth which the prognosis is that can be death. Platelet activating fact...
متن کاملExpression and DNA microarray analysis of a platelet activating factor-related molecule in severe pneumonia in mice due to influenza virus and bacterial co-infection.
Platelet-activating factor (PAF) is a critical mediator of severe inflammatory diseases such as pneumonia, and the PAF-receptor (PAFR) is known to be an anchor for Streptococcus pneumoniae attachment to lung epithelial cells. We conducted a DNA microarray analysis to detect critical factors that mediate fulminant pneumonia due to influenza virus and S. pneumoniae co-infection in mice. Among the...
متن کاملImproved host defense against pneumococcal pneumonia in platelet-activating factor receptor-deficient mice.
Platelet-activating factor (PAF) is a phospholipid with proinflammatory properties that binds to a specific receptor (PAF receptor [PAFR]) that is expressed on many different cell types. PAFR is able to bind phosphorylcholine, which is present in both PAF and the pneumococcal cell wall. Activation of respiratory epithelial cells in vitro results in up-regulation of PAFR, which, in turn, facilit...
متن کاملInvolvement of the platelet-activating factor receptor in host defense against Streptococcus pneumoniae during postinfluenza pneumonia.
Although influenza infection alone may lead to pneumonia, secondary bacterial infections are a much more common cause of pneumonia. Streptococcus pneumoniae is the most frequently isolated causative pathogen during postinfluenza pneumonia. Considering that S. pneumoniae utilizes the platelet-activating factor receptor (PAFR) to invade the respiratory epithelium and that the PAFR is upregulated ...
متن کاملPulmonary and systemic host response to Streptococcus pneumoniae and Klebsiella pneumoniae bacteremia in normal and immunosuppressed mice.
Mortality related to bacteremic pneumonia remains high, and the role of sepsis in inflammation, pulmonary injury, and death remains unclear, mostly in leukopenic states. In the present study, the microbiology, histopathology, and host response to Streptococcus pneumoniae and Klebsiella pneumoniae infection were determined in an experimental model of bacteremia in immunocompetent and leukopenic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 90 2 شماره
صفحات -
تاریخ انتشار 1992